A Decomposition Algorithm for Convex Nondifferentiable Minimization with Errors
نویسندگان
چکیده
A decomposition algorithm based on proximal bundle-type method with inexact data is presented for minimizing an unconstrained nonsmooth convex function f . At each iteration, only the approximate evaluation of f and its approximate subgradients are required which make the algorithm easier to implement. It is shown that every cluster of the sequence of iterates generated by the proposed algorithm is an exact solution of the unconstrained minimization problem. Numerical tests emphasize the theoretical findings.
منابع مشابه
Characterization of Properly Efficient Solutions for Convex Multiobjective Programming with Nondifferentiable vanishing constraints
This paper studies the convex multiobjective optimization problem with vanishing constraints. We introduce a new constraint qualification for these problems, and then a necessary optimality condition for properly efficient solutions is presented. Finally by imposing some assumptions, we show that our necessary condition is also sufficient for proper efficiency. Our results are formula...
متن کاملA Modified Fletcher-Reeves-Type Method for Nonsmooth Convex Minimization
Conjugate gradient methods are efficient for smooth optimization problems, while there are rare conjugate gradient based methods for solving a possibly nondifferentiable convex minimization problem. In this paper by making full use of inherent properties of Moreau-Yosida regularization and descent property of modified conjugate gradient method we propose a modified Fletcher-Reeves-type method f...
متن کاملAn algorithm for approximating nondominated points of convex multiobjective optimization problems
In this paper, we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP), where the constraints and the objective functions are convex. We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points. The proposed algorithm can be appl...
متن کاملAn adaptive level set method for nondifferentiable constrained image recovery
The formulation of a wide variety of image recovery problems leads to the minimization of a convex objective over a convex set representing the constraints derived from a priori knowledge and consistency with the observed signals. In previous years, nondifferentiable objectives have become popular due in part to their ability to capture certain features such as sharp edges. They also arise natu...
متن کاملConvex optimization techniques in system identification
In recent years there has been growing interest in convex optimization techniques for system identification and time series modeling. This interest is motivated by the success of convex methods for sparse optimization and rank minimization in signal processing, statistics, and machine learning, and by the development of new classes of algorithms for large-scale nondifferentiable convex optimiza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Applied Mathematics
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012